Anemia

Guidelines

- Haematology: British Society for Haematology (https://b-s-h.org.uk/guidelines/)
- Nephrology: KDIGO (2012 Anemia in CKD)
 https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-Anemia-Guideline-English.pdf
- Gastroenterology:
 - British Society of Gastroenterology: IDA
 (https://www.bsg.org.uk/wp-content/uploads/2019/12/Guidelines-for-the-management-of-iron.pdf?x8

 3412)
 - American Journal of Gastroenterology: Small bowel bleeding
 (https://journals.lww.com/ajg/Fulltext/2015/09000/ACG_Clinical_Guideline__Diagnosis_and_Manage_ment.10.aspx)

Definition of Anemia

- · <13: Men
- <12: Non pregnant women</p>
- <11 (because of dilution): Pregnant women</p>
- · Geriatric population: No specific cut-offs, clinically contextualise; but rule of thumb ~ 10 might be acceptable)

Defining Iron Deficiency

- Ferritin
 - Most important marker
 - < 15 umg/L definitive IDA (if no co-existent disease)</p>
 - o < 50-100 umg/L (possibly IDA if other ongoing processes like infections)
 - < up to 200 in chronic diseases such as CKD
- · Other factors: Low iron, raised TIBC
- CKD/ESRF Thresholds for IDA
 - Pre-Dialysis/PD Patients: TSAT <20%, Ferritin <100 ng/mL (pre-dialysis and PD pts)
 - o HD Patients: <20%, Ferritin <200 ng/mL (Haemodialysis pts)

Pathophysiology of Anemia in CKD

- · Iron deficiency Most common (absolute and functional)
- · Other causes include: Decreased EPO production, anemia of chronic disease, nutritional deficiency, blood loss (dialysis, blood taking), reduced RBC survival, marrow suppression

When does anemia become a problem in CKD

- · Usually CKD Stage 4-5 (when eGFR <30)
- · Anemia is an independent risk factor for adverse cardiovascular outcomes

How hard to hunt beyond CKD for anemia?

- Evaluate as per a general population
- · If there is IDA offer GI referral for endoscopic evaluation before replacement

Optimising iron and EPO status in CKD/ESRF patients

- Targets
 - o Hb: Generally 10-11.5; but needs to be contextualised (eg lower targets if recurrent access thrombosis)
 - o Iron:
 - § Non-Dialysis: TSAT > 25%, Ferritin > 200§ Dialysis: TSAT > 30%, Ferritin > 500

- · Non-Dialysis
 - Start PO iron (more convenient when not on HD) when TSAT < 30%
 - o Parenteral Iron
 - § Indications: Severe iron def (TSAT <12%), severe anemia (Hb<7), SE to PO iron, failure of therapy PO iron
 - § Ferrinject preferred over venofer in non-dialysis patients because can load higher dose faster
 - o Reassess in about 1 month, if iron replete (TSAT>25%, Ferritin>200) but Hb < 10, then start ESA
 - Usually Recormon: Usually start 4000u SC weekly then uptitrate (check Hb 2-4 weeks later)
 - Option of longer acting ESA like darbepoetin or mircera which allows less frequency dosing (1/week) but more expensive
- Dialysis
 - PD patients
 - § Don't do very well with PO iron, but don't have access for IV iron
 - § Hence lower threshold for admissions for IV iron therapy
 - o HD patients
 - § If iron deficient, load IV venofer 100mg once/week for 8-10 weeks
 - § Once replete, maintain 100mg once/month

Endoscopic evaluation in IDA

- · Generally offer to all males and post-menopausal female
- · The lower the Hb, the higher the likelihood of malignancy
- But always go back to history and ascertain malignancy risk factors of possible etiologies (e.g. NSAID use for PUD and family history for GI malignancies)
- Nutritional deficiencies rare in local population except vegans without B!2 supplementation
- · In young foreign worker population, consider other conditions such as PUD and parasitic infections rather than isolated dietary deficiency

Variability of Iron Studies

- · Iron studies affected by multiple factors such as ongoing illness, fasting etc
- · While inpatient testing may not be ideal, may have benefits of:
 - o Opportunistic screening (as some patients don't make it to outpatient clinics)
 - o If serious disorder like cancer, don't want to delay diagnosis

How long are scopes 'valid' for?

- No simplistic answer to 'validity' Hence need to go back to patient and history what are the suspected diagnoses
- Lower threshold for repeat OGDs Peptic ulcer disease can develop in fairly short intervals
- · Higher threshold for repeat colonoscopy Colonic cancers take ~10 years from dysplasia to frank malignancy
- Will need to weigh risk to benefit in terms of procedural risk and aim of investigations, alongside alternatives (scans)

Utility of FOBT for screen

- Indicated as a screening test for ASYMPTOMATIC, AVERAGE RISK for COLON CANCER outside this context utility uncertain
- · Generally not recommended for screening for occult BGIT/IDA, unless a really last resort
- · Possibly can be used to sway patients to do endoscopic evaluation if positive
- New generation FIT more specific for LBGIT because of actual haem ring detection (hence less sensitive for UBGIT compared to older Guaic test)

Small bowel evaluation

- Small bowel bleeding is fairly uncommon (5-10% of all GI bleeds)
- Consider the following before small bowel evaluation
 - Clinical evaluation for other causes of IDA
 - o Repeating OGD and colonoscopy before small bowel evaluation
 - Cross sectional imaging of abdomen to exclude stricturing disease, diseases like GIST
- · First line of small bowel evaluation is often video capsule endoscopy but purely diagnostic, and findings may be non-specific/non-diagnostic
- Utility of small bowel evaluation is highest in the context of OVERT BGIT

Casting a wide net vs targeted testing based on MCV

- · Generally targeted
- · But always go back to history to further contextualise testing

Incidental microcytosis/macrocytosis

- · MCV changes usually precedes anemia, hence advisable to evaluate for cause of micro/macrocytosis in the absence of anemia
- · Causes of macrocytosis: B12/folate deficiency, hypothyroidism, liver disease, MDS, myeloma
- · Causes of microcytosis: Iron deficiency, thalassemia

Reticulocyte Profile

- · Reticulocytes Percentage
- Reticulocyte Ab (Absolute amount) Main parameter to consider
 - Ballpark Figures: 'Normal' retic range should correspond to normal Hb, Hb ~10: Retic count ~ 150, Hb
 7-8: Retic count ~ 150-200
 - Retic count dependent also on rate of blood loss
- Reticulocyte He: Measures amount of Hb in recticulocytes (may be a measure of functional Fe def)
- · All hematinic deficiencies cause reduced retic response but response is quickly corrected with replacement

Blood Transfusion

- Generally aim Hb > 7
- · Unless IHD, active bleeding then aim > 8

Iron Replacement

- Require 100-200mg elemental iron/day for iron replacement
- Diet: Heme iron (liver, red meat, seafood, poultry), non-heme iron (beans, dark green leafy vegetables, fried fruits, iron fortified bread/cereal/pasta)
- · PO Formulations

Oral Iron Preparations	Elemental Iron per tablet	% elemental iron	Tablet Equivalency to Ferrous Fumarate	Other Elements per tablet	Price/tab (\$) [SC/PR]	Subsidy Status
Ferrous Fumarate 200mg Tab	66mg	33%	1	-	0.05	S1
Ferrous Sulphate Co Tab [Contains Ferrous Sulphate anhydrous 200mg]	65mg	32%	1	Thiamine 3mg, Riboflavin 1.5mg Nicotinamide 10mg	0.12	S1
Ferrous Gluconate 300mg Tab	36mg	12%	2	-	0.12	S1
Ferrous Gluconate Co Cap (Sangobion) [contains Ferrous Gluconate 250mg]	30mg	12%	2	Cyanocobalamin 7.5mcg, Folic acid 1mg, Ascorbic acid 50mg, Manganese 0.2mg, Copper sulphate 0.2mg, Sorbitol 25mg	0.12	S1
Iberet Folate SR Tab [contains Ferrous Sulphate 525mg]	105mg	20%	0.6	Thiamine 6mg, Pyridoxine 5mg, Cyanocobalamin 25mcg, Riboflavin 6mg, Niacinamide 30mg, Folic Acid 800mcg, Calcium Panthothenate 10mg, Ascorbic Acid 500mg.	0.59	отс
Iron Polymaltose 50mg/ml Drops (Maltofer)	50mg/ml	100%	1.2mL	-	13.05/btl (30mL)	S1
Iron Polymaltose 100mg Tab (Maltofer)	100mg	100%	0.7	•	0.65	отс

- o Preparations
 - § Ferrous sulphate: 65mg elemental Fe / tab
 - § Sangobion (multiple vitamins): 30mg elemental Fe / tab
 - § Polymaltose drops: 50mg elemental Fe / ml
 - § Polymaltose tablets: 100mg elemental Fe / tab
- o Generally main SE that of constipation
- o Vitamin C can increase iron absorption (caution in renal patients as can cause renal stones)
- Parenteral Iron
 - o Ferrosig (Iron Polymaltose) IM/IV
 - Venofer (Iron Sucrose) IV; more in renal patients
 - o Ferrinject (Ferric Carboxymaltose) IV; more in other patients as can give higher iron boost
 - All carry small risk of anaphylaxis

B12 Deficiency

- Diagnosis
 - B12 < 200 probable deficiency; 200-300 possible deficiency
 - While guidelines suggest role of MMA/homocysteine, practically don't check much in Singapore because of cost and limited test availability
- · Pernicious Anemia Screening
 - Check anti-intrinsic factor; anti-parietal cell is non-specific
 - Even if negative in very low B12, to treat as seronegative pernicious anemia
- · Treatment of Pernicious Anemia
 - o IM B12 injections for pernicious anemia
 - PO B12 generally not for repleting B12 in pernicious anemia because of significant depletion of stores, mainly for maintenance
 - o However often times in pernicious anemia, may still choose to maintain with IM B12 monthly
 - Dosing Singapore uses Cyanocobalamin (not that uptodate recommendations based on hydroxocobalamin)
 - § 1000mcg IM/SC daily x 7 days THEN
 - § 1000mcg weekly x 1 month THEN
 - § 1000mcg monthly for maintenance
- · Endoscopic Screening
 - Older studies showed association with GI ca, but more recent studies haven't seem to show so
 - o Generally refer based on other factors such as GI symptoms, age etc
 - o However, because of higher upper GI malignancy risk compared to western population, might consider

Hemolytic Anemia

- · Normal LFT DOES NOT exclude hemolysis low grade hemolysis may not cause raised bilirubin/LDH
- · Haptoglobin is SENSITIVE but NOT SPECIFIC; can be lowered in liver dysfunction

Take Home Points

- · Dr Low: Anemia workup in CKD should still be as per the normal patient, thresholds for IDA differ in CKD cohort
- Dr Koh: Treat IDA with respect could portend malignancy
- · Dr Lee: Work up underlying causes of nutritional deficiencies rather than simply supplenting